Like many towns and cities across Europe and worldwide, urban air quality and
the potential harmful effects of pollution on human health, is an issue of
concern in Brighton & Hove. Cars, taxis, vans, public transport fleets and
trucks each contribute to total vehicular emissions, which combine with
industrial and other sources in defining the quality of air in the built
environment. While the exhaust emissions of new vehicles are thoroughly tested
over regulatory drive cycles during the development phase, however, little
information currently exists as to their actual emissions when used in service.
According to Department for Transport
statistics the city of Brighton & Hove boasts the country’s highest – and
consistently growing – number of bus journeys per head of population outside
London. Brighton & Hove Bus and Coach Company is by far the largest
operator within the city, operating a fleet of approximately 280 modern buses.
It is committed to contributing towards a cleaner environment – for example, in
actively engaging with Brighton & Hove City Council in the planning of a
proposed Low Emissions Zone, and for this reason the company chose to
collaborate with Ricardo and test equipment specialist HORIBA in measuring the
real-world emissions of its buses.
Route and vehicle selection
A major area of concern in terms of air
quality for Brighton is the central east-west thoroughfare of North Street,
which is known to suffer from poor air quality. Bus route 7 was selected
for the tests as it traverses the city through this air quality hot spot, and
covers a total of 18km (9km in each direction) with significant gradients
throughout.
In order to provide a cross-section of the
Brighton & Hove bus fleet, the tests were carried out on a Euro IV vehicle
fitted with exhaust gas recirculation (EGR) aftertreatment technology, a Euro V
vehicle fitted with selective catalytic reduction (SCR) aftertreatment, and a
further Euro V SCR equipped diesel-electric hybrid vehicle.
Each bus was instrumented with HORIBA’s
advanced Portable Emissions Monitoring System (PEMS) equipment and artificially
loaded with ballast representing a 70 percent passenger load (for reasons of
health and safety, passengers were not carried and the test runs were not part
of the regular timetable).
The vehicles were tested on multiple trips
and in normal traffic during business/shopping hours, stopping at regular bus
stops in a similar manner to the normal passenger service A number of different
drivers and driving styles were used in testing one of the three vehicles so
that the effects of these variables could also be assessed.
Measurements were scientifically recorded in
real-time of each vehicle’s emissions of CO2 and NOx. By detailed consideration
of the type of emissions technology installed on the vehicle, estimates were
also made of the proportion of NOx emitted as NO2. The real-time emissions data
obtained were correlated with GPS measurements so that an accurate analysis of
the effects of route topology could be made.
Overall emissions followed expected trend
Overall emissions followed expected trend
While there has been much debate about the
extent to which regulatory vehicle emissions limits reflect real-world
emissions, the three vehicle types followed the expected trend of CO2 and NOx
reducing from Euro IV to V and from Euro V to Euro V hybrid. However it was
also found that certification level is not necessarily a reliable predictor of
the lowest comparative emissions performance at a particular location or
instant in time.
No obvious influence of driver or driving
style was observed on either CO2 or NOx emissions in this study (based on
testing of the Euro IV bus). It was also found that CO2 and NOx emissions were
seen to be broadly aligned so that in general, measures taken to improve fuel
economy are likely to also have a benefit on NOx emissions.
Traffic flow and route topology key determinants
of emissions
Looking at the results in detail across the
whole of the route tested, it was clear that poor traffic flow on the westbound
journey is perhaps the major contributor to higher NOx emissions in North
Street.
Erratic stop-start operation at this uphill
stretch of the route, demanding multiple cycles of acceleration and braking
would be expected to challenge the performance of EGR and SCR emissions
aftertreatment control systems, and rapidly depletes the batteries of hybrids.
This strongly correlated with the real-time
vehicle emissions data, which demonstrated significantly higher levels at this
location when operating in the westbound and uphill direction. A clear
conclusion of the work was that initiatives aimed at smoothing traffic flow at
this location and allowing buses to operate without unnecessarily frequent
stop-start cycles, could have a large positive impact on both NOx emissions and
fuel economy.
Possible traffic improvements
The results of the research were presented to
Brighton & Hove City Council in early July, and appear to be well aligned
with proposals already under discussion to improve bus flow in the vicinity of
the known air quality hot spot. Informed by tangible research findings
demonstrating how the effects of frequent stopping and acceleration cycles can
significantly affect emissions of the bus fleet, the council, the bus company
and other local stakeholders are now in a much improved position to make
informed judgements on the emissions – and by extension, the air quality
improvement potential – of possible traffic improvement schemes.
As buses and coaches form approximately 38
percent of vehicle movements in the North Street area (according to City
Council figures for 2012), the research project focused on a representative
sample of the comparatively modern Brighton & Hove fleet. A further 6
percent of vehicle movements are heavy goods vehicles and a significant
proportion of the remainder are likely to be of diesel taxis and other light
vehicles. Further research on these other potentially significant contributors
to emissions would be necessary for a more complete picture of real-world
emissions in this vicinity, but the conclusions of this work will assist
Brighton & Hove in its efforts to make a tangible and positive impact on
local air quality.
“We were really pleased to have been able to collaborate with Brighton &
Hove Bus and Coach Company on this research project to measure scientifically,
the real-world emissions of buses operating in central Brighton,” said Ricardo
manager of aftertreatment and chemical analyses, Jon Andersson. “The results of
this work have provided some potentially very valuable insights into vehicle
emissions at a location of known poor air quality. I hope that the information
generated is of use to the City Council in its planning of future traffic
improvement schemes.”
“The recent availability of PEMS equipment
allows us to take real-time measurements of operating vehicles following their
normal duty cycle. This approach, as demonstrated in this project, allows us to
understand at a detailed level exactly where and how emissions are being
created. Armed with information of this resolution and quality, transport fleet
operators and local authorities will be far better placed to make informed
judgements as to the vehicle technology and traffic management improvements
that will be most effective in reducing vehicle emissions at source.”
Martin Harris, MD of Brighton & Hove Bus
and Coach Company, said: “The excellent technical research undertaken by
Ricardo has confirmed that we are travelling in the right direction with
investment in our fleet and in working with partners to reduce delays and stop
start traffic flows for buses that adversely impact on the environmental
performance of our fleet. The research has also informed us of a number of
opportunities to further improve our environmental performance in the future.”
Ian Davey, Brighton & Hove City Council
Deputy Leader and Lead Member on Transport, said: “Brighton & Hove, like
many cities, suffers severe air quality problems in our densely populated and
intensely used urban centres. We know that the main contributor is vehicle
emissions yet there is no easy solution. It is vital that any action taken to
address the problem is based on evidence and we are grateful for the work that
Ricardo is doing with Brighton & Hove buses to help us all better
understand the cause of the problems and to help focus our efforts on the most
effective solutions.”
Details of the research carried out in collaboration
with Brighton & Hove Bus and Coach Company and HORIBA will be published by
Ricardo in technical papers and journals over the coming months.
No comments:
Post a Comment